参考文献 References
[1] 陈军平, 杨艳丽,吴志强,等. 江西省畜禽养殖废水及环境中抗生素残留现状调查[J]. 安徽农业科学, 2015.
[2] 杨硕. 畜禽养殖废水的抗生素污染现状及检测方法[J]. 农业与技术, 2020,362(21):113-114.
[3] Yiruhan, Wang Q J, Mo C H, et al. Determination of four fluoroquinolone antibiotics in tap water in guangzhou and macao[J]. Environmental Pollution, 2010, 158(7):2350 -2358.
[4] Peng X, Tang C, Yu Y, et al. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the pearl river delta, south china[J]. Environment International, 2009, 35(2):303-309.
[5] Lu J, Wu J, Zhang C, et al. Occurrence, distribution, and ecological-health risks of selected antibiotics in coastal waters along the coastline of China[J]. Science of the Total Environment, 2018, 644:1469-1476.
[6] Westerhoff P, Yoon Y, Snyder S, et al. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes[J]. Environmental Science & Technology. 2005, 39(17):6649-6663.
[7] 兰雄, 刘钦, 周新涛, 等. 吸附法脱除废水中四环素的研究进展[J]. 过程工程学报,2022,(008):022
[8] Wang D, Jia F, Hou W, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. Journal of Colloid & Interface Science, 2018, 519:273-284.
[9] Maged A, Iqbal J, Kharbish S, et al. Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: characterization, sorption and mechanistic studies[J]. Journal of Hazardous Materials, 2019, 384:121320.
[10] 刘辉, 邹继颖, 吴伟, 等. 金属离子掺杂TiO2复合膜降解抗生素废水的研究[J]. 化工新型材料, 2016, 44 (12): 79-81.
[11] Gothwal R, Shashidhar T. Antibiotic pollution in the environment: a review[J]. Clean Soil, Air, Water, 2015, 43(4):479-489.
[12] Tian Y, Wei L, Yin Z, et al. Photosensitization mechanism of algogenic extracellular organic matters (EOMs) in the photo-transformation of chlortetracycline: Role of chemical constituents and structure[J]. Water Research, 2019, 164:114940.1-114940.8.
[13] Lee E, Glover C M, Rosario-Ortiz F L. Photochemical formation of hydroxyl radical from efflfluent organic matter: role of composition[J]. Environmental Science & Technology, 2013, 47 (21):12073-12080.
[14] 王闻烨. 抗生素光降解研究进展[J]. 环境科学与技术, 2014(S1):6.
[15] 姜现静,吕剑,武君,等. 三角褐指藻对环丙沙星的去除过程及影响因素[J].生态毒理学报, 2022, 17(4):523 -532.
[16] 朱小燕,傅大放,邓琳,等.小球藻引发水中环丙沙星的光降解效能研究[J].中国环境科学, 2013(4):6.
[17] 韦艳玲. 小球藻对典型氯霉素类及磺胺类抗生素的去除机制探究[J]. [2025-02-13].
[18] 李妍,张一清,于昌平,等. 地表水中典型磺胺类抗生素的自然衰减[J].环境化学, 2021, 40(3):10.
[19] 胡学香,陈勇,聂玉伦,等. 水中四环素类化合物在不同光源下的光降解[J].环境工程学报, 2012, 6(8):5.
[20] Zhang J, Fu D, Wu J. Photodegradation of norfloxacin in aqueous solution containing algae[J]. Journal of Environmental Sciences, 2012, 24(4):743-749.
[21] Ge L, Deng H. Degradation of two fluoroquinolone antibiotics photoinduced by Fe(Ⅲ)-microalgae suspension in an aqueous solution[J]. Photochemical and Photobiological Sciences, 2015, 14(4):693-699.
[22] Tian Y, Zou J, Feng L, et al. Chlorella vulgaris enhance the photodegradation of chlortetracycline in aqueous solution via extracellular organic matters (eoms): role of triplet state eoms[J]. Water Research, 2019, 149:35-41.
[23] Xiao G, Chen J, Show P L, et al. Evaluating the application of antibiotic treatment using algae-algae/ activated sludge system[J]. Chemosphere, 2021, 282: 130966.
[24] Hu J, Wei L, Zeng M, et al. Photosensitization mechanisms and detoxification effect of extracellular organic matters and intracellular organic matters in antibiotics photodegradation: A case of Microcystis aeruginosa[J]. Journal of Cleaner Production, 2024, 464(000):13.
[25] Jiang R, Wei Y, Sun J, et al. Degradation of cefradine in alga-containing water environment: a mechanism and kinetic study. Environmental Science and Pollution Research, 2019.
[26] Du Y, Zhang S, Guo R, et al. Understanding the algal contribution in combined uv-algae treatment to remove antibiotic cefradine. Research Advances, 2015, 5(74): 59953-59959.