期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Earth Science Research. 2024; 3: (1) ; 1-7 ; DOI: 10.12208/j.jesr.20240001.

Research progress on the removal of typical antibiotic pollutants by microalgae
基于微藻去除典型抗生素类污染物的研究进展

作者: 魏连雪, 王祎 *

国家海洋技术中心 天津

*通讯作者: 王祎,单位:国家海洋技术中心 天津;

发布时间: 2024-12-20 总浏览量: 190

摘要

近年来,抗生素滥用现象时有发生,并在多种水体环境中被频繁检出,给生态安全和人类健康带来极大威胁。基于微藻的抗生素处理技术具有去除效率高、操作便捷、环境友好的显著特点,引发行业学者广泛关注。本文综述了现阶段抗生素去除的主要技术手段及其局限性,包括吸附处理法、生物降解法、氧化处理法和光降解法。重点探讨了基于微藻去除抗生素的反应机理,分析了羟基自由基(·OH),单线态氧(1O2)和三重激发态(3EOM*,3IOM*)等活性物种在抗生素降解过程中所起的作用。总结了微藻光降解抗生素过程中的关键影响因素,包括微藻种类与浓度、抗生素种类与浓度、光源类型、pH和铁离子。最后指出优化微藻去除抗生素效能的潜在途径,为开发高效、环境友好的抗生素污染治理技术提供了理论依据。

关键词: 抗生素;微藻;去除机理;影响因素

Abstract

In recent years, the misuse of antibiotics has become a recurring issue, with frequent detection in various aquatic environments, posing significant threats to ecological safety and human health. Microalgae-based antibiotic treatment technology has garnered widespread attention from researchers in the field due to its notable characteristics of high removal efficiency, operational convenience, and environmental friendliness. This paper reviews the main technical approaches and their limitations for antibiotic removal at the current stage, including adsorption treatment, biodegradation, oxidation treatment, and photodegradation. It focuses on the reaction mechanisms of antibiotic removal by microalgae, analyzing the roles of reactive species such as hydroxyl radicals (·OH), singlet oxygen (1O2), and triplet excited states (3EOM*, 3IOM*) in the antibiotic degradation process. The key influencing factors in the photodegradation of antibiotics by microalgae are summarized, including microalgae species and concentration, antibiotic types and concentration, light source type, pH, and iron ions. Finally, potential pathways for optimizing the efficiency of antibiotic removal by microalgae are outlined, providing a theoretical basis for the development of efficient and environmentally friendly antibiotic pollution control technologies.

Key words: Antibiotics; microalgae; Removal mechanism; Influence factors

参考文献 References

[1] 陈军平, 杨艳丽,吴志强,等. 江西省畜禽养殖废水及环境中抗生素残留现状调查[J]. 安徽农业科学, 2015.

[2] 杨硕. 畜禽养殖废水的抗生素污染现状及检测方法[J]. 农业与技术, 2020,362(21):113-114.

[3] Yiruhan, Wang Q J, Mo C H, et al. Determination of four fluoroquinolone antibiotics in tap water in guangzhou and macao[J]. Environmental Pollution, 2010, 158(7):2350 -2358.

[4] Peng X, Tang C, Yu Y, et al. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the pearl river delta, south china[J]. Environment International, 2009, 35(2):303-309.

[5] Lu J, Wu J, Zhang C, et al. Occurrence, distribution, and ecological-health risks of selected antibiotics in coastal waters along the coastline of China[J]. Science of the Total Environment, 2018, 644:1469-1476.

[6] Westerhoff P, Yoon Y, Snyder S, et al. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes[J]. Environmental Science & Technology. 2005, 39(17):6649-6663. 

[7] 兰雄, 刘钦, 周新涛, 等. 吸附法脱除废水中四环素的研究进展[J]. 过程工程学报,2022,(008):022

[8] Wang D, Jia F, Hou W, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. Journal of Colloid & Interface Science, 2018, 519:273-284.

[9] Maged A, Iqbal J, Kharbish S, et al. Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: characterization, sorption and mechanistic studies[J]. Journal of Hazardous Materials, 2019, 384:121320.

[10] 刘辉, 邹继颖, 吴伟, 等. 金属离子掺杂TiO2复合膜降解抗生素废水的研究[J]. 化工新型材料, 2016, 44 (12): 79-81.

[11] Gothwal R, Shashidhar T. Antibiotic pollution in the environment: a review[J]. Clean Soil, Air, Water, 2015, 43(4):479-489. 

[12] Tian Y, Wei L, Yin Z, et al. Photosensitization mechanism of algogenic extracellular organic matters (EOMs) in the photo-transformation of chlortetracycline: Role of chemical constituents and structure[J]. Water Research, 2019, 164:114940.1-114940.8. 

[13] Lee E, Glover C M, Rosario-Ortiz F L. Photochemical formation of hydroxyl radical from efflfluent organic matter: role of composition[J]. Environmental Science & Technology, 2013, 47 (21):12073-12080.

[14] 王闻烨. 抗生素光降解研究进展[J]. 环境科学与技术, 2014(S1):6.

[15] 姜现静,吕剑,武君,等. 三角褐指藻对环丙沙星的去除过程及影响因素[J].生态毒理学报, 2022, 17(4):523 -532.

[16] 朱小燕,傅大放,邓琳,等.小球藻引发水中环丙沙星的光降解效能研究[J].中国环境科学, 2013(4):6.

[17] 韦艳玲. 小球藻对典型氯霉素类及磺胺类抗生素的去除机制探究[J]. [2025-02-13].

[18] 李妍,张一清,于昌平,等. 地表水中典型磺胺类抗生素的自然衰减[J].环境化学, 2021, 40(3):10.

[19] 胡学香,陈勇,聂玉伦,等. 水中四环素类化合物在不同光源下的光降解[J].环境工程学报, 2012, 6(8):5.

[20] Zhang J, Fu D, Wu J. Photodegradation of norfloxacin in aqueous solution containing algae[J]. Journal of Environmental Sciences, 2012, 24(4):743-749. 

[21] Ge L, Deng H. Degradation of two fluoroquinolone antibiotics photoinduced by Fe(Ⅲ)-microalgae suspension in an aqueous solution[J]. Photochemical and Photobiological Sciences, 2015, 14(4):693-699. 

[22] Tian Y, Zou J, Feng L, et al. Chlorella vulgaris enhance the photodegradation of chlortetracycline in aqueous solution via extracellular organic matters (eoms): role of triplet state eoms[J]. Water Research, 2019, 149:35-41.

[23] Xiao G, Chen J, Show P L, et al. Evaluating the application of antibiotic treatment using algae-algae/ activated sludge system[J]. Chemosphere, 2021, 282: 130966.

[24] Hu J, Wei L, Zeng M, et al. Photosensitization mechanisms and detoxification effect of extracellular organic matters and intracellular organic matters in antibiotics photodegradation: A case of Microcystis aeruginosa[J]. Journal of Cleaner Production, 2024, 464(000):13.

[25] Jiang R, Wei Y, Sun J, et al. Degradation of cefradine in alga-containing water environment: a mechanism and kinetic study. Environmental Science and Pollution Research, 2019.

[26] Du Y, Zhang S, Guo R, et al. Understanding the algal contribution in combined uv-algae treatment to remove antibiotic cefradine. Research Advances, 2015, 5(74): 59953-59959.

引用本文

魏连雪, 王祎, 基于微藻去除典型抗生素类污染物的研究进展[J]. 地球科学研究, 2024; 3: (1) : 1-7.